Saturday 12 March 2011

Inner Solar System

The inner Solar System is the traditional name for the region comprising the terrestrial planets and asteroids.[30] Composed mainly of silicates and metals, the objects of the inner Solar System are relatively close to the Sun; the radius of this entire region is shorter than the distance between Jupiter and Saturn.
Inner planets
Main article: Terrestrial planet
The inner planets. From left to right: Mercury, Venus, Earth, and Mars (sizes to scale, interplanetary distances not)

The four inner or terrestrial planets have dense, rocky compositions, few or no moons, and no ring systems. They are composed largely of refractory minerals, such as the silicates, which form their crusts and mantles, and metals such as iron and nickel, which form their cores. Three of the four inner planets (Venus, Earth and Mars) have atmospheres substantial enough to generate weather; all have impact craters and tectonic surface features such as rift valleys and volcanoes. The term inner planet should not be confused with inferior planet, which designates those planets that are closer to the Sun than Earth is (i.e. Mercury and Venus).
Mercury

    Mercury (0.4 AU from the Sun) is the closest planet to the Sun and the smallest planet in the Solar System (0.055 Earth masses). Mercury has no natural satellites, and its only known geological features besides impact craters are lobed ridges or rupes, probably produced by a period of contraction early in its history.[31] Mercury's almost negligible atmosphere consists of atoms blasted off its surface by the solar wind.[32] Its relatively large iron core and thin mantle have not yet been adequately explained. Hypotheses include that its outer layers were stripped off by a giant impact, and that it was prevented from fully accreting by the young Sun's energy.[33][34]

Venus

    Venus (0.7 AU from the Sun) is close in size to Earth, (0.815 Earth masses) and like Earth, has a thick silicate mantle around an iron core, a substantial atmosphere and evidence of internal geological activity. However, it is much drier than Earth and its atmosphere is ninety times as dense. Venus has no natural satellites. It is the hottest planet, with surface temperatures over 400 °C, most likely due to the amount of greenhouse gases in the atmosphere.[35] No definitive evidence of current geological activity has been detected on Venus, but it has no magnetic field that would prevent depletion of its substantial atmosphere, which suggests that its atmosphere is regularly replenished by volcanic eruptions.[36]

Earth

    Earth (1 AU from the Sun) is the largest and densest of the inner planets, the only one known to have current geological activity, and is the only place in the universe where life is known to exist.[37] Its liquid hydrosphere is unique among the terrestrial planets, and it is also the only planet where plate tectonics has been observed. Earth's atmosphere is radically different from those of the other planets, having been altered by the presence of life to contain 21% free oxygen.[38] It has one natural satellite, the Moon, the only large satellite of a terrestrial planet in the Solar System.

Mars

    Mars (1.5 AU from the Sun) is smaller than Earth and Venus (0.107 Earth masses). It possesses an atmosphere of mostly carbon dioxide with a surface pressure of 6.1 millibars (roughly 0.6 percent that of the Earth's).[39] Its surface, peppered with vast volcanoes such as Olympus Mons and rift valleys such as Valles Marineris, shows geological activity that may have persisted until as recently as 2 million years ago.[40] Its red colour comes from iron oxide (rust) in its soil.[41] Mars has two tiny natural satellites (Deimos and Phobos) thought to be captured asteroids.[42]

Asteroid belt
Main article: Asteroid belt
Image of the main asteroid belt and the Trojan asteroids

Asteroids are mostly small Solar System bodies[e] composed mainly of refractory rocky and metallic minerals.[43]

The main asteroid belt occupies the orbit between Mars and Jupiter, between 2.3 and 3.3 AU from the Sun. It is thought to be remnants from the Solar System's formation that failed to coalesce because of the gravitational interference of Jupiter.[44]

Asteroids range in size from hundreds of kilometres across to microscopic. All asteroids save the largest, Ceres, are classified as small Solar System bodies, but some asteroids such as Vesta and Hygieia may be reclassed as dwarf planets if they are shown to have achieved hydrostatic equilibrium.[45]

The asteroid belt contains tens of thousands, possibly millions, of objects over one kilometre in diameter.[46] Despite this, the total mass of the main belt is unlikely to be more than a thousandth of that of the Earth.[47] The main belt is very sparsely populated; spacecraft routinely pass through without incident. Asteroids with diameters between 10 and 10−4 m are called meteoroids.[48]
Ceres

    Ceres (2.77 AU) is the largest body in the asteroid belt and is classified as a dwarf planet.[e] It has a diameter of slightly under 1000 km, and a mass large enough for its own gravity to pull it into a spherical shape. Ceres was considered a planet when it was discovered in the 19th century, but was reclassified as an asteroid in the 1850s as further observation revealed additional asteroids.[49] It was again reclassified in 2006 as a dwarf planet.

Asteroid groups

Asteroids in the main belt are divided into asteroid groups and families based on their orbital characteristics. Asteroid moons are asteroids that orbit larger asteroids. They are not as clearly distinguished as planetary moons, sometimes being almost as large as their partners. The asteroid belt also contains main-belt comets, which may have been the source of Earth's water.[50]

Trojan asteroids are located in either of Jupiter's L4 or L5 points (gravitationally stable regions leading and trailing a planet in its orbit); the term "Trojan" is also used for small bodies in any other planetary or satellite Lagrange point. Hilda asteroids are in a 2:3 resonance with Jupiter; that is, they go around the Sun three times for every two Jupiter orbits.[51]

The inner Solar System is also dusted with rogue asteroids, many of which cross the orbits of the inner planets.

No comments:

Post a Comment